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Abstract. Recently, a procedure to create renaturable hetempolymirs. ‘imprinting’, has been 
proposed and examined theoretically. The significance of imprinting is,  that certain aspects 
of a hetempolymer’s native conformation may be mnmlled during the synthesis stage. We 
examine this possibility theoretiully by introducing an extemal held during the synthesis and 
renaturation stages of the model. We hnd that imprinting in an external held leads to protein-& 
heteropolymers which can renature to native conformations which are affected by the held. even 
in the absence of the held during renaturation. We mnclude by commenting on the relevance 
of these results to the biological and prebiological creation of biopolymers, such as proteins, 
influenced by the analogues to WI external field, such as antigens or ligands.~ 

1. Introduction 
Disordered polymers are one of the most important objects in the physics of disordered 
systems; mainly because of the potential biologic@ applications. Among other disordered 
polymeric systems, such as branched polymers and knots, two have acquired most attention 
in recent years: heteropolymers, linear chains with an uneven sequence of different links, 
and homopolymers situated in a disordered environment, such as a white-noise external field. 

The main physical peculiarity of heteropolymers is the frusaation imposed by the 
conflicting requirements of the segregation of different monomers in space due to monomer- 
monomer volume interactions and the connection of monomers due to the polymeric bonds. 
When interactions are strong enough, freezing behaviour similar to the one observed in spin 
glasses is found. The frozen phase of heteropolymers is dominated by one or very few 
conformations, or chain folds, that are minimally frustrated [l]. 

For a homopolymer in a disordered medium, there are also several models to be 
mentioned. The simplest one views an ideal chain (without excluded volume or other 
volume interaction between monomers) looking for the deepest potential well. This is 
described in [2,3]. Not surprisingly, the polymer in this model collapses to microscopic 
size independently of the chain length. In ~a more realistic model, this pathological 
indefinite collapse is prevented by the monomer excluded volume, and the corresponding 
conformations are described in [4,5]. In this case, frustration is also imposed by the linear 
connections between chain monomers, the conflicting tendencies being the placement of 
monomers in the deepest possible wells of the potential (to keep polymer density below the 
densely packed maximum) and the maintenance of prescribed distances between monomers. 

Our aim in the present paper is to consider a generalized model, where both types of 
disorder are presented simultaneously: a heteropolymer with frozen sequence of links in the 

t On leave from: Institute of Chemical Physics. Russian Academy of Sciences, Moscow 117977, Russia 
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disordered extemal field. The appealing property of this model is that heterogeneity enters 
the system twice, first because volume interactions of monomers are of a heteropolymeric 
fashion and second because different monomers also feel the extemal field in different ways. 

For the sake of simplicity, we restrict ourselves to the simplest assumption of a dense- 
packed system. This means that our polymer is closely packed into the box which is 
supported by some external pressure, so that density of the system remains spatially uniform, 
no matter what the corresponding energy of the external field. For this system, the behaviour 
in one extreme is known: if the external field is negligibly small (as compared with volume 
interactions), very few conformations will be frozen out at low temperatures because of the 
normal heteropolymer freezing transition [S, 101. On the other hand, a strong external field 
imposed on the system with weak volume interactions can also be expected to cause freezing 
of some distinct conformations-those that best fit the field configuration. What is important, 
however, is that these two small sets of conformations are generally completely different. 
This means that sufficiently strong extemal field destroys the freezing of heteropolymer to 
the conformation dictated by its sequence. 

Another important aspect of the problem is which sequences of monomers we are 
speaking about. This is to be taken seriously, because sequences are responsible for coding 
functions in biopolymers and therefore the adequacy of random sequences to model real 
ones is at least questionable. To this end, two ways to model real sequences were recently 
suggested [&SI. Even though there are important differences between the two, they both 
employ the idea to form sequences thermodynamically. Speaking now of an extemal field, 
we can consider this field affecting sequence formation, or polymer folding with an already 
formed sequence, or both. All these possibilities are of great interest, as an external field 
can represent (to a schematic approximation) some target molecules or ligands, which are 
either used to control some desirable properties of the sequence, such as presence of an 
appropriate active site in the 'native' conformation, or iduence renaturation processes, etc. 

We believe that the above-mentioned models of sequence design are of great interest for 
the understanding of biopolymers. In this context, the incorporation of the external field in 
the model allows us to approach various questions related to the design procedure: suppose 
we form the sequence under the action of the field; will it be able to renature without the 
field? Or vice versa-if the sequence is formed without any field, will the field help or 
destroy the renaturation? Or what happens to renaturation if the, acting field is opposite to 
the one presented in the polymerization process? We will address these questions below. 

(i) heteropolymer has two types of monomers ('black-and-white model') with king-type 

(ii) overall polymer density is maintained such that polymer volume fraction is always one; 
(iii) extemal field is modelled as a quenched random &correlated potential; 
(iv) interactions are considered unchanged at the stages of sequence formation and of chain 

V S Pande et ai 

In the present paper, we examine systematically the model where 

interactions; 

folding. 

2. The model 

We model heteropolymeric monomer-monomer and monomer-field interactions with the 
Hamiltonian 

N N 

'H = -B  S J  S(T,  -TI) - h z s ,  U ( T I )  (1) 
1.J I 
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where u(z) is the external field. All homopolymeric contrihutions, such as excluded 
volume virial coefficients, are omitted for brevity, as they do not couple to heteropolymeric 
contributions. We repeat, however, that polymer density is kept constant. 

Because of self-averaging, and since both the sequence and extemal field are quenched 
in each existing chain, the relevant free energy is to be averaged over an ensemble of 
sequepks and external fields U: ~.~ ~ 

where Z[seq,u] is the corresponding partition function. Ignoring for the moment the 
technical question of how to perform this average, we note that the two elements of frozen 
disorder presented here, the sequence and the field, play a considerably different role. 
Indeed, we are considering the model in which the sequence is formed hy a special design 
procedure and therefore may or may not be dependent on the extemal field. Moreover. the 
external field which acts during the chain polymerization may generally be different from 
the field acting on the already prepared chain. To take care of this fact, we write 

?tu, seql = DupPPb, up] x P{&eql (3) J 
where %[dl stands for conditional probability of d under the condition 8. P{,,][seq] 
is really the distribution of sequences, and it is dictated by the design procedure. As both 
of the known procedures to design sequences are based on the equilibration of either the 
monomer soup in real space [7,8] or the polymer in sequence space [6], the distribution of 
sequences is given as corresponding Boltzmann distribution, and it is therefore proportional 
to 

P{,$~eql = Zptseq9 up] (4) 

where Zp[seq, up] is the partition function of the polymerization system. Hereafter, we omit 
all irrelevant normalization constants. 

We now employ the replica trick 

(zn) - 1 (In 2) = lim 
n-0 n (5) 

to perform the average in (2). Collecting equations (2) through (5) together, we get 

The structure of this expression allows us to consider the preparation state as an additional 
n + 1 replica, albeit with its own temperature and some Hamiltonian parameters. To see it, 
we write 

(7) 

where index r may be absent for replicas 1, . . . , n and stands for p (‘polymerization’) for 
additional replica 0. 

For simplicity, we do not consider various cases of statistical interdependencies of the 
fields U and up. Furthermore, we consider both to be &correlated white noise, such that 

1 1 
z,[seq, u,~ = exp [ -T;xr[seq, ur, conformation] 

coflfomatioor 

(ur(R)) = 0 (ur(R)ur(R’)) = W % ( R  - R’) . (8) 
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As we assume that the value of the field at one position is uncorrelated with its value at a 
different position, the probability dishbution of U is Gaussian: 

V S Pande et a1 

P[u, U,] = 8[u(R) -U,@)] exp - dRw%(R)'} I S  (9) 

where w controls the width of the probability distribution of the extemal field. Even though 
we consider U and U, to be strongly correlated, we can examine several physical situations 
by choosing various combinations of h and h, in the Hamiltonians 'H and 'H, in equation (7): 

(i) If the field effects chain design and folding in the same way, we take h = h,; 
(ii) If the field is presented during design only, we take h = 0, h,  # 0; 
(iii) By contrast, if the field is presented for the existing prepared chain only, when the 

chain folds, then h # 0, h, = 0; 
(iv) The field can affect the system during the folding stage in the opposite direction 

compared to the design stage; in this case h = -h, # 0. 
Thus, to gain physical insight into the system, it should be enough to consider the 

simplest probability distribution for the external field (9), but taking into account the general 
situation with respect to different h and h,. 

Since the interactions in the monomer soup are the same as those found in the polymer, 
the parts of the Hamiltonians 'H and 'Hp describing interactions should be identical, namely, 
there should be the same B .  

Thus, the (n + 1)-replica partition function has the following form: 

where h, and T, is defined according to 

and Tm=[. T, for CY = 0 
for CY z 0 for' o( > 0. 

As elsewhere in the paper, we drop all the normalization constants. 

the quantity 1: SI 
We go from spins to fields by performing the HubbardStmtonovich transformation on 

- R) and average over the sequences and extemal field to get 

We can expand the lncosh to h2) to get 
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where Q,~(RI ,  Rz)  = E, 6(ry - R l ) S ( d  - Rz) is the conformation correlator between 
replicas [9,8]. This expression (13) is rather cumbersome, but it can be substantially 
simplified by noting that for a polymer in 3D the one-step replica-symmetry breaking scheme 
is valid, as was first noted in [9]. This result holds me for the case in hand, where an 
external field is presented, as can be easily shown by reproducing arguments of [9] in the 
form of [8]. In the onestep replica-symmetry breaking, the free energy is minimized for 
the correlator Q such that two replicas either have complete overlap or do not overlap at 
all [9,8]. Thus, this corresponds to the form 

where p is the density of the system and qd is a (n + 1) x (n + 1) matrix of the single-step 
replica-symmetry breaking form (figure 1) 

Q.~,E(RI. Rz) P 4-6 ~ ( R I  - Rz) (14) 

Figure 1. 

There are two ways in which replica symmetry is broken: (i) spontaneously, in which 
frustrations lead to certain conformations which have differing energies and (ii) due to the 
the selection procedure which explicitly breaks repIica symmeby. We parameterize in 
terms of the number of replicas y which overlap with replica 0 (and therefore have the 
polymerization conformation), and the (n - y)/x groups of replicas which each overlap 
with x replicas due to spontaneous replica-symmetry breaking. 

For further simplification, it is useful to substitute 4 &2- (still omitting 
the irrelevant factors in front of the integral) and to use bra ket vector and matrix notations 
[8] (where the dimensionality of the vector space is n + 1): 

1 1  (2””) = [ sd’”+l’$ dg exp [ - U’[ - - :(i 141 $1 
C d  P W 2  
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Figure 2. Cancon contour plot of a mdam field. For a polymer which consists of only two 
types of monomers ('black' and 'white'), we examine king interactions for monomer-monomer 
and monomer-field interactions. Even without monomer-monomer interactions, the polymeric 
bonds cause frustration since they prevent the monomers from matching 'colours' with the field. 

We evaluate this Gaussian integral, which yields (Z"+') = exp(-E + S), where 

E = f I n d e t [ i - 2 p B 4 f - ' ] + t l n  - 1 -(il4Bpi-'(i-2~pB4f-')-'d+f$li)] 
[ P d  

(16) 
where we have taken into account that ? and 4 do commute to each other. S is the entropy 
due to the transformation between the sum over conformations and functional integration 

To simplify further, we need the eigenvalues and eigenvectors of the h = i-2pB4f-I 
matrix. These have been previously calculated [81. These calculations are facilitated by the 
fact that all of the matrices are block matrices and the associated scalar products can be 
calculated for each block, then summed. In terms of x and y, we find 

(il@Bpf-'(i - 2pB4?-')-'41i) = Bp($  + i)($ + e) h 2  [I -2Bp($ + -!-)]-I 

+-[ X 1 - 2BpxjT 1-  (17) 

Over Q.~(RI ,  RZ). 

n - Y (BpxlT)(hxlT)2 

One can easily show that 

( i l 4 l i )  = [ (q TP + 2 y ( 2 )  + (q + y( 31 (18) 
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and it has been previously shown that [8] 

We have now written the energy entirely in terms of the new scalar order parameters x 
and y .  We can do the same for the entropy [lo, 81: 

~ . 
~~ 

S = N s  ["(x X - l )+  y ]  (20) 

where s = ln(u3/u). Thus, we can now write the free energy entirely in terms of 2 and y :  
F 
N 

where 

(22) 
To find the temperature at which the system freezes into random conformations, we 

optimize F with respect to x .  Note that the n --f 0 limit must be kept in mind during 
these calculations, i.e. the free energy should be linearized in terms that are of O(n) (i.e. n 
and y ) .  We find a solution similar to the zero-field case [lo, 81 

where t~ is the solution to the equation 

(24) 

and tP = PIT,.  If we expand for small t and tp3 we get 
Thus, there are two sources for freezing: the external field and the polymer interaction. 

Thus, even in the case where the chain is a homopolymer with respect to volume interactions 
( B  = 0), but has heteropolymeric interactions with the external field (h # 0), freezing 
occurs due to the desire to place monomers in low-energy positions with respect to the field 
and the polymeric bonds which frustrate this goal. Moreover, in the limit in which there 
is no field during imprinting (hp = 0) and polymer-polymer interactions are negligible 
compared to the external field (h >> B ) ,  we can exactly find the freezing temperature 
TJ = hp3~2w(4s)- ' /2;  it is clear that the external field contributes to frustrations and 
therefore leads to freezing. 

We now examine the transition to the target group. As there are no extrema within the 
region y = 0.. . n, the free energy is maximized at the boundary, i.e. either at y = 0 (no 
replicas overlap with the target replica) or y = n (all replicas overlap with the target replica 
and therefore the polymer renatures to the designed conformation). To find which value of 

= p, / (Bz  + h2pw2/4)/s .  
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y maximizes the free energy, we linearize the free energy in y and examine the condition 
where the slope of the free energy with respect to y changes sign: 

23; 2s = In(1  - 2 B t )  + 
1 - 2Btp 

If we expand for small c’s, which corresponds to the small s (flexible chain) limit, we get 
the relation 

(26) 
4B2 + 2B(h + h,) + hh, 

4B2 + h2 -k (j = 2 g f b  where g = 

Thus, we have 

2 g T / ( 1 +  T’fT,?) 
g T j  for T 4 Tf . 

for T 2 Tj 
T;= [ 

To this order, we find that Ti is simply the zero-field (h = h, = 0) case multiplied by g 
and with a modified (since TJ is-a function of h to this order). Note that in the limit 
B -+ 0, (26) and (27) are exact. 

3. Discussion 
We have found that in the flexible chain limit, the external field case is a simple generaliza- 
tion of the zero-field case, simply with a newly defined freezing temperature Tf and a factor 
g ( h ,  h,) in the definition of the threshold polymerization temperature T;. To examine these 
modifications, we must first look at the behaviour of g ( h ,  h,), shown in figure 3. 

(i) Imprinting and renaturation in the presence of the field (h = hp). 
We examine the following cases: 

We see that for the same field strength during imprinting and renaturation, freezing 
to the target conformation is enhanced, as g(h,  h )  > 1, and therefore the threshold 

Figure 3. In the flexible chain limit, the effect of the external field during design (hp) and/or 
during EnaNmtion (h) enters into the theory as a Rscaliig of the polymerization temperature T,. 
The effective po lymedon  temperamre is given by Tp --t Tp/g(h,  h& We plot g for the four 
cases addressed in the discussion. 
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polymerization temperature Tp’ is greater than the h = h, = 0 case. In fact, for 
h = h, = 25,  we find that the frustration is maximized, as both the polymer-polymer 
and polymer-field interactions contribute equally. At very high fields (h >> E ) ,  the 
contribution from the polymer-polymer interactions are negligible and there is freezing 
solely due to the extemal field; thus, in this limit g -+ 1. 

We see trivially from (26) that in the limit, g = 1 i- h,/2B.  Thus even without 
the extemal field during renaturation, the polymer renatures to the polymerization 
conformation. This is crucial to the molecular recognition ability of imprinted polymers, 
as we would require the polymer to fold to its native state in order to recognize the 
extemal field. As one would expect, we can see directly from the plot of g in figure 2 
that T; for this case must be lower than the case where the polymer is designed and 
renatured with the field (h = hp): the polymer must be better optimized in order 
to renature without the field originally present during imprinting. For the high-field 
limit (h >> B), then g (and therefore T;) grows linearly with h,. Of course, in this 
extreme, the effect of B is unimportant &d what must be examined is hp/Tp:  there is 
no distinction between lowering the temperature at a fixedfield strength and raising the 
field strength with a fixed temperature. 

In this case, the field acts to destroy the process of renaturation. If the field is sufficiently 
strong (h >> E ) ,  g approaches zero. For the intermediate field case (h =: B),  there is a 
maximum in g(h,  0), with g(hmaX, 0) > 1; this is due to the added frustrations due to 
the competition between the polymer-polymer and polymer-field interactions. 

Here, we apply exactly the opposite field which the system wishes to recognize.. When 
the field strength is equal to the strength of the polymer-polymer interactions (h = B), 
the field destroys any possibility of renaturation to the target conformation. For higher 
field strengths (h > ZB), g becomes negative; this implies that for imprinting to work, 
we need a negative polymerization temperature, which simply switches back the sign 
of h, (the switching of the sign of B is irrelevant in this limit). 

In conclusion, imprinted polymers in an extemal field display protein-lie behaviour. 
For example, they can renature to an imprinted conformation which has been affected by a 
given extemal field without the field present during renaturation. This property is analogous 
to an antibody renaturing without the antigen present Also, we have shown that the field 
can disrupt folding to the polymerization conformation in the cases where either the field 
was absent or of the opposite sign during imprinting. 

Furthermore, these results are not only applicable to the in vitro imprinting procedure. 
Indeed, one can consider the optimization of proteins by biological evolution to be a 
selection of sequences which minimizes the energy of the heteropolymer in a particular 
conformation [6], which on the level of mean-field calculations, is formally identical to 
imprinting [7,8]. Therefore, these results can be interpreted in terms of possible biological 
or prebiological evolutionary mechanisms. Indeed, in terms of biological evolution, one 
can consider many forms of external fields whose effects nature would like to incorporate 
in the native conformation of a given enzyme or antibody. Furthermore, due to its minimal 
requirements and simple design scheme, imprinting has been proposed as a mechanism for 
prebiotic evolution [7,8]; one may speculate that the monomer soup of the primordial eaah 
was  an^ in vivo imprinting-like experiment, in which primitive ligands acted as extemal 

(ii) Imprinting with thefield but renaturation without thefield (h = 0, h, # 0). 

(iii) Imprinting without the field, but renaturation with the field (h # 0, h, = 0). 

(iv) Imprinting without the field, but renaturation with the opposite field (h = -hp). 
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fields, allowing the creation of heteropoIymers capable of biological-like functions, such as 
molecular recognition. 
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